Pre-validation of the CULTEX® system assessing the acute inhalation toxicity of nanoparticles by direct exposure of cells via the air-liquid interface

Sebastian Hoffmann¹, Niklas Möhle², Mirko Papritz³, Christine Pohl⁴, Michaela Aufderheide² ¹seh consulting + services, Köln, Germany, ²Cultex[®] Laboratories GmbH, Hannover, Germany, ³Institute of Pharmacology and Toxicology, German Armed Forces Munich, Germany, ⁴ Institute of Pathology, Repair-Lab, University Medical Center, Johannes Gutenberg University Mainz, Germany

Introduction

Over the last decade, nanochemistry has developed tremendously, not without In total, 12 nanoparticles have been selected, e.g. DQ12, TiO2-P25, CB14, ZnO, BaSO4, realising that the safety and risk assessment of nanoparticles will challenge current ALOOH I, CeO2, ZrO2 and CuO. The selection has been based on availability and toxicological approaches. As for many nanoparticles, the respiratory tract is the quality of toxicological animal data from inhalation studies as well as availability main portal to the human body, and the inhalation exposure route requires special of samples. As the nanoparticles show very different behaviour when being attention. Therefore, the CULTEX® Radial Flow System (RFS) has specifically been compressed for use in the CULTEX[®] Dust Generator, substance-specific compressing procedures had to be developed and transferred to the other laboratories. designed to model inhalation *in-vitro*. Furthermore, aerosol generation, particle distribution and deposition have also been taken into consideration, in order to optimize and standardize the *in-vitro* exposure of cells at the air-liquid interface.

Objectives The CULTEX[®] RFS module distributes the generated test aerosol via a central inlet into 3 radial tubes directly to 3 transwell inserts (Fig. 1) for dose-dependent exposure of cultivated cells at the air-liquid interface (ALI). During the experiment, the cells The aim of the research project is the reduction of animal studies in the field of acute inhalation toxicology by a standardized *in-vitro* direct exposure method for are supplied with medium from below the membrane. An integrated water heating studying particulate atmospheres. circuit maintains the temperature constantly at 37 °C. Particles are generated in the specially developed CULTEX[®] Dust Generator according to Wright (1955), connected In this pre-validation study, the 4 modules of the modular approach, which primarily with the elutriator. Here, the larger particles are retained whereas the air-transported focus on assay reliability, are as follows: fraction provides the particle test atmosphere.

1. Test definition

SOPs have been developed for cell culturing and handling, exposure-related methods and procedures as well as for analytical methods like the WST-1 (cytotoxicity) and LDH assay (membrane integrity).

2. Transferability

Identical laboratory setups have been installed (e.g. CULTEX® RFS module, particle press, aerosol generator) in the 3 laboratories. The two unskilled laboratories have been trained in handling the instruments and performing the experiments.

3. Within-laboratory reproducibility

Currently, the first substances are being tested. The overall analysis of all test substances will be performed threefold in all laboratories. The within-laboratory reproducibility will be assessed independently.

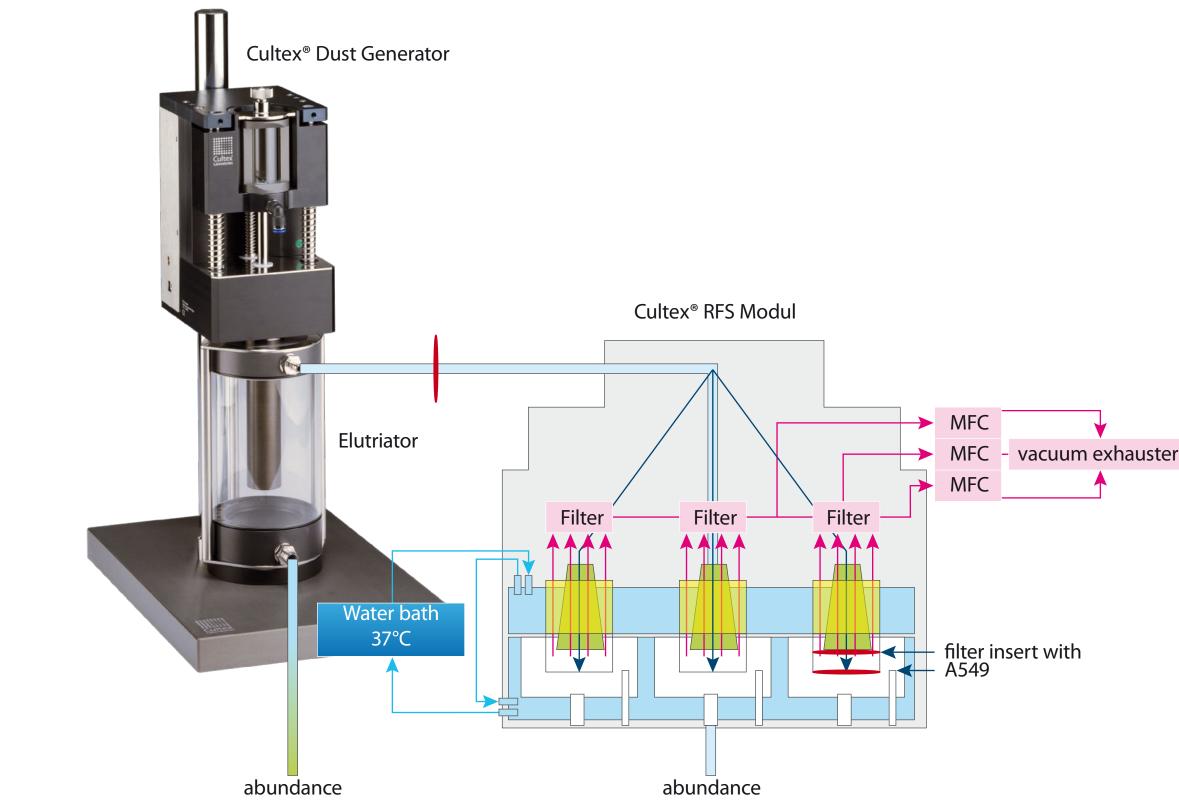
4. Inter-laboratory reproducibility

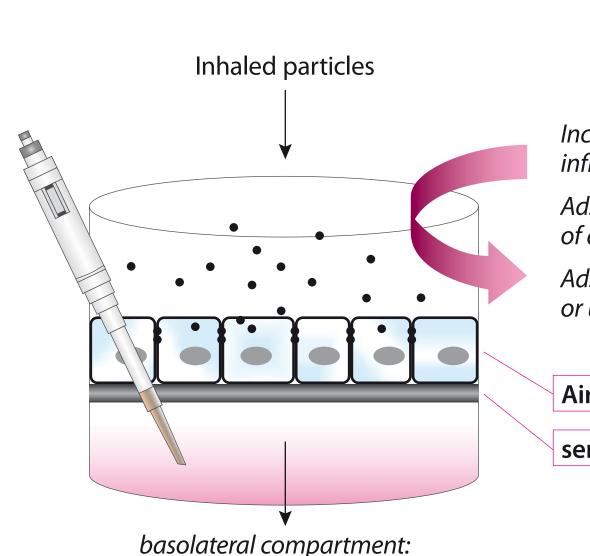
Based on the data on all substances of the 3 laboratories the inter-laboratory reproducibility will be assessed independently.

www.cultex-laboratories.com

Nanoparticle selection

The CULTEX[®] Radial Flow System




Figure 1: Scheme of the experimental setup

Increased mediator production, Pulmonary inflammation, Pullmonary disease Adsorption and inactivation of defense and other proteins Adsorption of proteins that facilitate or block cellular uptake

Airway epithelium

transwell membranes, which can be exposed directly on the apical side (ALI) (Fig. 2).

semipermeable membrane

Figure 2: A549 cells on a transwell

The pre-validation team

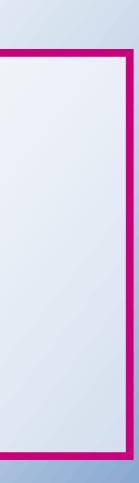
IL-8 and other cytokines, LDH

Three laboratories and an independent statistician form the team of this pre-validation study, which is funded by the German Ministry of Education and Research (BMBF grant 0315710):

- Cultex[®] Laboratories GmbH Co-ordinating and lead laboratory as well as provider of the Cultex[®] technology.
- Institute of Pharmacology and Toxicology, German Armed Forces, Munich and
- Institute of Pathology, Repair-Lab, University Mainz These institutes are well experienced in the field of inhalation toxicology *in-vitro* and represent the unskilled laboratories in this study.
- seh consulting + services This competent partner in the validation process is responsible for data handling, assessment and supports the study management.

Study progress

Activity


Development of the SOPs Transfer Training & transferability Testing of nanoparticles Data analysis

(tentative) date Sep 2010 – Mar 2011 Sep 2010 – Jul 2011 Jan 2011 – Sep 2011 Oct 2011 – Apr 2012 May 2012 – Aug 2012

